

Fiorenza Donato @ Physics Dept., Un. Torino
In coll. with F. Calore (Hamburg) & M. Di Mauro (Torino)

Fermi Symposium - Monterey, October 31, 2012

Radio-loud Misaligned AGN (MAGN)

MAGN: AGN with jet not aligned along the line-of-sight (l.o.s.)

Doppler boosting negligible
Radio galaxies (RG) and steep-spectrum radio quasars (SSRQs)
Abundant radio data: total (including lobes) and central region (core)

Radio galaxies: classified by Fanaroff&Riley (1974)

FRI edge-darkened, less powerful, Bl Lacs parent

FRII edge-brightened, more powerful, FSRQs parent

Fermi-LAT observed 15 MAGN between 0.1-100 GeV (Fermi-LAT ApJ 720, 2010) Some of them are variable.

Could these objects contribute in a significant amount to the diffuse extra-galactic background (EGB)?

Fermi-LAT MAGNs: main radio and gamma properties

MAGN(FRI,FRII)	Z	b°	$\alpha_{5\mathrm{GHz}}^{\mathrm{C}}(\alpha_{5\mathrm{GHz}}^{\mathrm{tot}})$	S_{5GHz}^{C} [Jy] (S_{5GHz}^{tot}) [Jy])	Γ	$F_{\gamma} [10^{-9} \text{ph/cm}^2/\text{s}]$
3C 78(I)	0.02865	-44.6	0 (0.64 2)	$0.964 \pm 17\%^{2} (3.40 \pm 0.11^{3})$	1.95 ± 0.14	4.7 ± 1.8
3C 274(I)	0.0038	74.5	$0(0.79^{9})$	$3.0971 \pm 0.0300^{8} (71.566 \pm 0.993^{-10})$	2.17 ± 0.07	25.8 ± 3.5
Cen A(I)	0.0009	19.4	$0.30^{11} (0.70^{11})$	$6.984 \pm 0.210^{12} (62.837 \pm 0.099^{13})$	2.76 ± 0.05	175 ± 10
NGC 6251(I)	0.02471	31.2	0(0.7210)	$0.38 \pm 0.04^{-14} (0.510 \pm 0.050^{-14})$	2.20 ± 0.07	18.2 ± 2.6
Cen B(I)	0.01292	1.68	$0(0.13^{17})$	$2.730^{16} (6.58 \pm 1.04^{17})$	2.33 ± 0.12	39.3 ± 11.4
For A(I)	0.005871	-56.7	$0.50^{18}(0.52^{2})$	$0.051^{18} (72^2)$	2.16 ± 0.15	7.7 ± 2.4
3C 120(I)	0.03301	-27.4	$0(0.44^{19})$	$3.458 \pm 0.588^{2} (8.60 \pm 1.46^{2})$	2.71 ± 0.35	29 ± 17
PKS0625-35(I)	0.05459	-20.0	0 (0.65 4)	$0.600 \pm 0.030^{4} (2.25 \pm 0.09^{5})$	1.93 ± 0.09	12.9 ± 2.6
Pictor A(II)	0.03506	-34.6	0 (1.07 2)	$1.15 \pm 0.05^{20} (15.45 \pm 0.47^5)$	2.93 ± 0.03	21.9 ± 3.6
3C 111(II)	0.04850	-8.61	$-0.20^{-1} (0.73^6)$	$1.14^{21} (6.637 \pm 0.996^{19})$	2.54 ± 0.19	40 ± 8
3C 207(II)	0.6808	30.1	0 (0.90 6)	$0.5391 \pm 0.0030^7 (1.35 \pm 0.04^5)$	2.36 ± 0.11	17.3 ± 3.3
* 3C 380(II)	0.692	23.5	0 (0.7110)	$5.073 \pm 0.105^{-15} \ (7.45 \pm 0.37^{-5})$	2.34 ± 0.07	30.3 ± 3.7
IC 310(I)	0.01894	-13.7	faint(0.75 ²⁴)	faint (0.258 ± 0.031^{25})	2.10 ± 0.19	11.1 ± 6.2
3C 84(I)	0.01756	-13.2	(0.78^6)	high variability	2.00 ± 0.02	175 ± 8
PKS 0943-76(II)	0.270	-17.2	faint	faint(0.757 ²³)	2.44 ± 0.14	19.5 ± 5.1

Radio data taken at 5 GHz an near in time to Fermi-LAT

* Are not firmly FRI / FRII RG

Gamma-ray luminosity function

Correlation between radio core emission at 5 GHz and gamma > 100 MeV

N. B. Similar results if we exclude: 3C380, 3C207; PK50625-350

Testing L_{γ} - L_{r} correlation: upper limits from undetected FRI&FRII

We derive upper limits for FRI (Ghisellini+ 2005) and FRII (Kataoka+2011) having strong radio core fluxes

GREAT!!!

they do not violate the correlation \rightarrow It looks physical

Constraints from logN-logS

Let's assume:
$$\rho_{\gamma}(L_{\gamma},z) = k \, \rho_{r}(L_{r},z) \frac{d \log_{10} L_{r}}{d \log_{10} L_{\gamma}}$$

$$N_{th}(>F_{\gamma}) = 4\pi \int_{\Gamma_{max}}^{\Gamma_{min}} \frac{dN}{d\Gamma} d\Gamma \int_{0}^{z_{max}} \frac{d^{2}V}{dz d\Omega} \int_{L_{\gamma,min}}^{\infty} \frac{dL_{\gamma}}{L_{\gamma} \ln(10)} \rho_{\gamma}(L_{\gamma}, z, \Gamma)$$

- 1. Core-Luminosity function (Yuan&Wang ApJ 2012) predicts k~1!!
- 2. Fermi-LAT N-count can be added to the fit to reduce uncertainties

I- Diffuse y-ray flux from unresolved MAGN

Diffuse flux <u>VERY LOW</u> when obtained from correlating with radio emission from the <u>central</u> engine region, ~ 1% of EGB data

Increases by ~10 if from correlation with <u>total</u> radio emission

II- Diffuse y-ray flux from unresolved MAGN

Uncertainty due to $L_{\rm Y}$ - $L_{\rm r}$ correlation ~ 10 Uncertainty due to $L_{\rm Y}$ - $L_{\rm r}$ correlation & logN-logS ~2-3

Conclusions

New calculation of diffuse gamma-ray emission from MAGNs

- •Strong <u>correlation</u> between radio core emission at 5 GHz and gamma-ray data for Fermi-LAT detected MAGN
- Correlation strengthened by <u>upper limits</u> on radio loud FRI,II undetected by Fermi-LAT
- Luminosity agrees with data on N-count without need of rescaling
- The diffuse emission from MAGN is <u>very low</u>, 1% Fermi-LAT of measured EGB
- •<u>Uncertainties</u> range between a factor of 2 and 10 depending on the use of the observed N-count.

BACKUP SLIDES

Upper limits from FRI & FRII

MAGN(FRI,FRII)	z	S _{SGHz} [Jy]	TS _{unblimed}	FUL anhinned	TS _{binned}	FUL binned
3C 18 (II)	0.188	0.0831	<1	2.69	2.57	6.05
B3 0309+411B (II)	0.134	0.320^{2}	-		<1	5.78
3C 215 (II)	0.412	0.01643	0.084	3.06	4.14	6.01
3C 227 (II)	0.086	0.0321	<1	0.84	<1	1.08
3C 303 (II)	0.141	0.150^{3}	< 1	2.85	3.30	4.60
3C 382 (II)	0.058	0.188^{3}	<1	4.06	1.16	5.88
3C 390.3 (II)	0.056	0.120^4	<1	1.75	2.97	4.71
3C 411(II)	0.467	0.0785			<1	6.09
4C 74.26 (II)	0.104	0.1006	1.10	5.43	<1	5.75
PKS 2153-69 (II)	0.028	0.300	4.18	6.56	<1	6.18
3C 445 (II)	0.056	0.0861	<1	0.74	<1	1.03
3C 465 (I)	0.029	0.270^3			<1	0.51
3C 346 (I)	0.162	0.2203	4.48	6.37	10.74	10.2
3C 264 (I)	0.021	0.200^{3}	8.99	5.61	13.97	7.52
3C 66B (I)	0.022	0.1823	- II-		<1	8.3
3C 272.1(I)	0.003	0.180^3	.19	(5.62)	5.26	6.74
3C 338 (I)	0.030	0-10 53			< 1	4.56
3C 293 (I)	0.045	1.1 %	< 1	1.52	<1	1.85
3C 29 (I)	055	0.0933	<1	1.48	<1	4.11
3C 31(I)	0.11%	0.092^3			<1	3.92
3C 310 (1)	0.054	0.080^3	< 1	1.16	il	2.13
.C) 9 (I)	0.024	0.0773	<1	1.51	<1	2.30
3(449 (I)	0.017	0.0373	<1	0.49	<1	0.80
3C 288 (I)	0.246	0.030^{3}	< 1	1.52	1.63	3.68
3C 83.1B (I)	0.026	0.040^3	9.9	(19.7)	16.50	23.2
3C 438 (II)	0.290	0.00713	< 1	(1.01)	11	3.25
3C 386 (I)	0.018	0.120^3			<1	3.17
3C 433 (II)	0.102	0.005^3			<1	1.90
3C 442A (I)	0.027	0.0023			<1	0.86
3C 245 (II)	1.029	0.910^{3}	<1	1.98	<1	4.01
3C 109 (II)	0.306	0.9633	<1	1.36	<1	3.53
3C 212 (II)	1.049	0.150^3	6.39	7.12	10.11	8.80
da 240 (II)	0.036	0.1053	<1	1.53	<1	2.79

N-count with 9 MAGNs

